Regla de Bayes



En este sitio tendras una breve explicacion sobre el tema de Probabilidad y su acompañante Estadistica, debido a que son temas ocupados en la vida cotidiana. De esta forma podras adquirir informacion que te servira como herramineta durante el estudio de esta rama de la mastematicas.




Axiomas de Kolmogórov
Dado un conjunto de sucesos elementales, Ω, sobre el que se ha definida una σ-álgebra (léase sigma-álgebra) σ de subconjuntos de Ω y una función P que asigna valores reales a los miembros de σ, a los que denominamos "sucesos", diremos que P es una probabilidad sobre (Ω,σ) si se cumplen los siguientes tres axiomas.


Es la rama de la matemática que estudia los diversos arreglos o selecciones que podemos formar con los elementos de un conjunto dado, los cuales nos permite resolver muchos problemas prácticos. Por ejemplo podemos averiguar cuántos números diferentes de teléfonos , placas o loterías se pueden formar utilizando un conjunto dado de letras y dígitos.
Si el número de posibles resultados de un experimento es pequeño, es relativamente fácil listar y contar todos los posibles resultados. Al tirar un dado, por ejemplo, hay seis posibles resultados.

La varianza siempre será mayor que cero. Mientras más se aproxima a cero, más concentrados están los valores de la serie alrededor de la media. Por el contrario, mientras mayor sea la varianza, más dispersos están.
1.- Rango: Diferencia entre el mayor valor de la muestra (1,30) y el menor valor (1,20). Luego el rango de esta muestra es 10 cm.
Por lo tanto, la varianza es 0,0010
3.- Desviación típica: es la raíz cuadrada de la varianza.
Luego:
4.- Coeficiente de variación de Pearson: se calcula como cociente entre la desviación típica y la media de la muestra.
Cv = 0,0320 / 1,253
Luego,
Cv = 0,0255
El interés del coeficiente de variación es que al ser un porcentaje permite comparar el nivel de dispersión de dos muestras. Esto no ocurre con la desvación típica, ya que viene expresada en las mismas unidas que los datos de la serie.
Por ejemplo, para comparar el nivel de dispersión de una serie de datos de la altura de los alumnos de una clase y otra serie con el peso de dichos alumnos, no se puede utilizar las desviaciones típicas (una viene vienes expresada en cm y la otra en kg). En cambio, sus coeficientes de variación son ambos porcentajes, por lo que sí se pueden comparar.

Ejemplo: vamos a utilizar la tabla de distribución de frecuencias con los datos de la estatura de los alumnos que vimos en la lección 2ª.
Vamos a calcular los valores de las distintas posiciones centrales:
Si presentáramos esta información en una tabla de frecuencia obtendríamos una tabla de 30 líneas (una para cada valor), cada uno de ellos con una frecuencia absoluta de 1 y con una frecuencia relativa del 3,3%. Esta tabla nos aportaría escasa información.
El número de tramos en los que se agrupa la información es una decisión que debe tomar el analista: la regla es que mientras más tramos se utilicen menos información se pierde, pero puede que menos representativa e informativa sea la tabla.

Veamos un ejemplo:
Medimos la altura de los niños de una clase y obtenemos los siguientes resultados (cm):
Si presentamos esta información estructurada obtendríamos la siguiente tabla de frecuencia:
Si los valores que toma la variable son muy diversos y cada uno de ellos se repite muy pocas veces, entonces conviene agruparlos por intervalos, ya que de otra manera obtendríamos una tabla de frecuencia muy extensa que aportaría muy poco valor a efectos de síntesis.



© ..::Probabilidad & Estadistica::... Bloggerized by FalconHive.com .
Design by USA Phone Lookup. In collaboration with Biker Dating Sites. Worldwide People Locator. Public Records DB.