featured-content

14:46 0 comentarios

Regla de Bayes


La regla de Bayes es un caso especial de la probabilidad condicional que se aplica cuando se desea calcular la probabilidad condicional de un evento que ocurrió primero dado lo que ocurrió después. Para llegar a establecer tan útil regla vamos a estudiar una proposición previa.




14:24 0 comentarios

Axiomas de Probabilidad


Los axiomas de probabilidad son las condiciones mínimas que deben verificarse para que una función que definimos sobre unos sucesos determine consistentemente valores de probabilidad sobre dichos sucesos.

La probabilidad P de un suceso E, denotada por P(E), se define con respecto a un "universo" o espacio muestral Ω, conjunto de todos los posibles sucesos elementales, tal que P verifique los Axiomas de Kolmogórov, enunciados por el matemático ruso de este nombre en 1933. En este sentido, el suceso E es, en términos matemáticos, un subconjunto de Ω.




Axiomas de Kolmogórov


Dado un conjunto de sucesos elementales, Ω, sobre el que se ha definida una σ-álgebra (léase sigma-álgebra) σ de subconjuntos de Ω y una función P que asigna valores reales a los miembros de σ, a los que denominamos "sucesos", diremos que P es una probabilidad sobre (Ω,σ) si se cumplen los siguientes tres axiomas.






En términos más formales, una probabilidad es una medida sobre una σ-álgebra de subconjuntos del espacio muestral, siendo los subconjuntos miembros de la σ-álgebra los sucesos y definida de tal manera que la medida del total sea 1. Tal medida, gracias a su definición matemática, verifica igualmente los tres axiomas de Kolmogórov. A la terna formada por el espacio muestral, la σ-álgebra y la función de probabilidad se la denomina Espacio probabilístico, esto es, un "espacio de sucesos" (el espacio muestral) en el que se han definido los posibles sucesos a considerar (la σ-álgebra) y la probabilidad de cada suceso (la función de probabilidad).




14:20 1 comentarios

Analisis Combinatorio

Es la rama de la matemática que estudia los diversos arreglos o selecciones que podemos formar con los elementos de un conjunto dado, los cuales nos permite resolver muchos problemas prácticos. Por ejemplo podemos averiguar cuántos números diferentes de teléfonos , placas o loterías se pueden formar utilizando un conjunto dado de letras y dígitos.

Además el estudio y comprensión del análisis combinatorio no va ha servir de andamiaje para poder resolver y comprender problemas sobre probabilidades

Principios fundamentales del Análisis Combinatorio:
En la mayoría de los problemas de análisis combinatorio se observa que una operación o actividad aparece en forma repetitiva y es necesario conocer las formas o maneras que se puede realizar dicha operación. Para dichos casos es útil conocer determinadas técnicas o estrategias de conteo que facilitarán el cálculo señalado.

El análisis combinatorio también se define como una manera práctica y abreviada de contar; las operaciones o actividades que se presentan son designadas como eventos o sucesos.

Ejemplo :


Señalar las maneras diferentes de vestir de una persona, utilizando un número determinado de prendas de vestir


Ordenar 5 artículos en 7 casilleros


Contestar 7 preguntas de un examen de 10


Designar 5 personas de un total 50 para integrar una comisión


Sentarse en una fila de 5 asientos 4 personas


Escribir una palabra de 7 letras utilizando 4 consonantes y 3 vocales


I) Principio de multiplicación :

Si un evento o suceso "A" puede ocurrir , en forma independiente, de "m" maneras diferentes y otro suceso de "n" maneras diferentes, entonces el número de maneras distintas en que pueden suceder ambos sucesos es "m . n"

Ejemplo 1:

En la etapa final de fútbol profesional de primera, cuatro equipos : CRISTAL ( C ), BOYS ( B) ,ESTUDIANTES ( E ), UNIVERSITARIO (U), disputan el primer y segundo lugar (campeón y subcampeón). ¿De cuántas maneras diferentes estos equipos pueden ubicarse en dichos lugares?

Solución :

METODO 1: utilizando el diagrama del árbol
1er lugar 2do lugar 1o 2o


Existen 12 maneras diferentes en que estos equipos se pueden ubicarse en el primer y segundo lugar

METODO 2: Utilizando el principio de multiplicación

1o 2o

4 x 3

# maneras = 12

Ejemplo 2:

¿Cuántas placas para automóviles pueden hacerse si cada placa consta de dos letras diferentes seguidas de tres dígitos diferentes? (considerar 26 letras del alfabeto)

Solución :


letras Dígitos

26 x 25 x 10 x 9 x 8

# placas = 468 000

II) Principio de adición :


Supongamos que un evento A se puede realizar de "m" maneras y otro evento B se puede realizar de "n" maneras diferentes, además, no es posible que ambos eventos se realicen juntos (AÇ B = Æ ), entonces el evento A o el evento B se realizarán de ( m + n) maneras.

Ejemplo 1:

Un repuesto de automóvil se venden en 6 tiendas en la Victoria o en 8 tiendas de Breña.¿De cuántas formas se puede adquirir el repuesto?

Solución :

Por el principio de adición:
Victoria ó Breña

6 formas + 8 formas = 14 formas

Ejemplo 2:

Se desea cruzar un río, para ello se dispone de 3 botes, 2 lanchas y 1 deslizador. ¿De cuantas formas se puede cruzar el río utilizando los medios de transporte señalados?

Solución :

Aplicando el principio de adición se tiene:
Bote , lancha , deslizador

3 ó 2 ó 1

# maneras = 3 + 2 + 1 = 6
12:38 0 comentarios

Técnicas de Conteo

Si el número de posibles resultados de un experimento es pequeño, es relativamente fácil listar y contar todos los posibles resultados. Al tirar un dado, por ejemplo, hay seis posibles resultados.

Si, sin embargo, hay un gran número de posibles resultados tales como el número de niños y niñas por familias con cinco hijos, sería tedioso listar y contar todas las posibilidades.

Las posibilidades serían, 5 niños, 4 niños y 1 niña, 3 niños y 2 niñas, 2 niños y 3 niñas, etc. Para facilitar el conteo examinaremos tres técnicas: La técnica de la multiplicación, la técnica de la permutación, y la técnica de la combinación.

La Técnica de la Multiplicación

La técnica de la multiplicación: Si hay m formas de hacer una cosa y hay n formas de hacer otra cosa, hay m x n formas da hacer ambas cosas

En términos de fórmula

Número total de arreglos = m x n

Esto puede ser extendido a más de dos eventos. Para tres eventos, m, n, y o:

Número total de arreglos = m x n x o

Ejemplo:

Un vendedor de autos quiere presentar a sus clientes todas las diferentes opciones con que cuenta: auto convertible, auto de 2 puertas y auto de 4 puertas, cualquiera de ellos con rines deportivos o estándar. ¿Cuántos diferentes arreglos de autos y rines puede ofrecer el vendedor?

Para solucionar el problema podemos emplear la técnica de la multiplicación, (donde m es número de modelos y n es el número de tipos de rin).

Número total de arreglos = 3 x 2

No fue difícil de listar y contar todos los posibles arreglos de modelos de autos y rines en este ejemplo. Suponga, sin embargo, que el vendedor tiene para ofrecer ocho modelos de auto y seis tipos de rines. Sería tedioso hacer un dibujo con todas las posibilidades. Aplicando la técnica de la multiplicación fácilmente realizamos el cálculo:

Número total de arreglos = m x n = 8 x 6 = 48

La Técnica de la Permutación


Como vimos anteriormente la técnica de la multiplicación es aplicada para encontrar el número posible de arreglos para dos o más grupos. La técnica de la permutación es aplicada para encontrar el número posible de arreglos donde hay solo u grupo de objetos. Como ilustración analizaremos el siguiente problema: Tres componentes electrónicos - un transistor, un capacitor, y un diodo - serán ensamblados en una tablilla de una televisión. Los componentes pueden ser ensamblados en cualquier orden. ¿De cuantas diferentes maneras pueden ser ensamblados los tres componentes?

Las diferentes maneras de ensamblar los componentes son llamadas permutaciones, y son las siguientes: T D C D T C C D T T C D D C T C T D

Permutación: Todos los arreglos de r objetos seleccionados de n objetos posibles

La fórmula empleada para contar el número total de diferentes permutaciones es:

n P r = n!

(n – r )!
Donde:

nPr es el número de permutaciones posible n es el número total de objetos r es el número de objetos utilizados en un mismo momento

n P r = n! = 3! = 3 x 2 = 6

(n – r )! ( 3 – 3 )! 1
Ejemplo:

Suponga que hay ocho tipos de computadora pero solo tres espacios disponibles para exhibirlas en la tienda de computadoras. ¿De cuantas maneras diferentes pueden ser arregladas las 8 máquinas en los tres espacios disponibles?

n P r = n! = 8! = 8! = 336

(n – r )! ( 8 – 3 )! 5!
En el análisis anterior los arreglos no presentan repeticiones, es decir, no hay dos espacios disponibles con el mismo tipo de computadora. Si en los arreglos se permite la repetición, la fórmula de permutaciones es la siguiente:

n Pr = nr

Para ilustrar el punto, queremos saber ¿cuántas series de 2 letras se pueden formar con las letras A, B, C, si se permite la repetición? Las permutaciones son las siguientes:

AA, AB, AC, BA, CA, BB, BC, CB, CC

Usando la fórmula:

n Pr = nr = 3P2 = 32 = 9

La Técnica de la Combinación

En una permutación, el orden de los objetos de cada posible resultado es diferente. Si el orden de los objetos no es importante, cada uno de estos resultados se denomina combinación. Por ejemplo, si se quiere formar un equipo de trabajo formado por 2 personas seleccionadas de un grupo de tres (A, B y C). Si en el equipo hay dos funciones diferentes, entonces si importa el orden, los resultados serán permutaciones. Por el contrario si en el equipo no hay funciones definidas, entonces no importa el orden y los resultados serán combinaciones. Los resultados en ambos casos son los siguientes:

Permutaciones: AB, AC, BA, CA, BC, CB

Combinaciones: AB, AC, BC

Combinaciones: Es el número de formas de seleccionar r objetos de un grupo de n objetos sin importar el orden.

La fórmula de combinaciones es:

n C r = n!
r! (n – r )!

Ejemplo: En una compañía se quiere establecer un código de colores para identificar cada una de las 42 partes de un producto. Se quiere marcar con 3 colores de un total de 7 cada una de las partes, de tal suerte que cada una tenga una combinación de 3 colores diferentes. ¿Será adecuado este código de colores para identificar las 42 partes del producto?

Usando la fórmula de combinaciones:

n C r = n! = 7! = 7! = 35

r! (n – r )! 3! ( 7 – 3 )! 3! 4!
El tomar tres colores de 7 posibles no es suficiente para identificar las 42 partes del producto.
17:46 7 comentarios

Aplicaciones de la Probabilidad


La probabilidad constituye un importante parametro en la determinación de las diversas causalidades obtenidas tras una serie de eventos esperados dentro de un rango estadístico.

Existen diversas formas como método abstracto, como la teoría Dempster-Shafer y la teoría de la relatividad numérica, esta última con un alto grado de aceptación si se toma en cuenta que disminuye considerablemente las posibilidades hasta un nivel mínimo ya que somete a todas las antiguas reglas a una simple ley de relatividad. Así mismo es la parte de lae.


Dos aplicaciones principales de la teoría de la probabilidad en el día a día son en el análisis de riesgo y en el comercio de los mercados de materias primas. Los gobiernos normalmente aplican métodos probabilísticos en regulación ambiental donde se les llama "análisis de vías de dispersión", y a menudo miden el bienestar usando métodos que son estocásticos por naturaleza, y escogen qué proyectos emprender basándose en análisis estadísticos de su probable efecto en la población como un conjunto. No es correcto decir que la estadística está incluida en el propio modelado, ya que típicamente los análisis de riesgo son para una única vez y por lo tanto requieren más modelos de probabilidad fundamentales, por ej. "la probabilidad de otro 11-S". Una ley de números pequeños tiende a aplicarse a todas aquellas elecciones y percepciones del efecto de estas elecciones, lo que hace de las medidas probabilísticas un tema político.

Un buen ejemplo es el efecto de la probabilidad percibida de cualquier conflicto generalizado sobre los precios del petróleo en Oriente Medio - que producen un efecto dominó en la economía en conjunto. Un cálculo por un mercado de materias primas en que la guerra es más probable en contra de menos probable probablemente envía los precios hacia arriba o hacia abajo e indica a otros comerciantes esa opinión. Por consiguiente, las probabilidades no se calculan independientemente y tampoco son necesariamente muy racionales. La teoría de las finanzas conductuales surgió para describir el efecto de este pensamiento de grupo en el precio, en la política, y en la paz y en los conflictos.

Se puede decir razonablemente que el descubrimiento de métodos rigurosos para calcular y combinar los cálculos de probabilidad ha tenido un profundo efecto en la sociedad moderna. Por consiguiente, puede ser de alguna importancia para la mayoría de los ciudadanos entender cómo se cálculan los pronósticos y las probabilidades, y cómo contribuyen a la reputación y a las decisiones, especialmente en una democracia.

Otra aplicación significativa de la teoría de la probabilidad en el día a día es en la fiabilidad. Muchos bienes de consumo, como los automóviles y la electrónica de consumo, utilizan la teoría de la fiabilidad en el diseño del producto para reducir la probabilidad de avería. La probabilidad de avería también está estrechamente relacionada con la garantía del producto.

Se puede decir que no existe una cosa llamada probabilidad. También se puede decir que la probabilidad es la medida de nuestro grado de incertidumbre, o esto es, el grado de nuestra ignorancia dada una situación. Por consiguiente, puede haber una probabilidad de 1 entre 52 de que la primera carta en un baraja de cartas es la J de diamantes. Sin embargo, si uno mira la primera carta y la reemplaza, entonces la probabilidad es o bien 100% o 0%, y la elección correcta puede ser hecha con precisión por el que ve la carta. La física moderna proporciona ejemplos importantes de situaciones determinísticas donde sólo la descripción probabilística es factible debido a información incompleta y la complejidad de un sistema así como ejemplos de fenómenos realmente aleatorios.

En un universo determinista, basado en los conceptos newtonianos, no hay probabilidad si se conocen todas las condiciones. En el caso de una ruleta, si la fuerza de la mano y el periodo de esta fuerza es conocido, entonces el número donde la bola parará será seguro. Naturalmente, esto también supone el conocimiento de la inercia y la fricción de la ruleta, el peso, lisura y redondez de la bola, las variaciones en la velocidad de la mano durante el movimiento y así sucesivamente. Una descripción probabilística puede entonces ser más práctica que la mecánica newtoniana para analizar el modelo de las salidas de lanzamientos repetidos de la ruleta. Los físicos se encuentran con la misma situación en la teoría cinética de los gases, donde el sistema determinístico en principio, es tan complejo (con el número de moléculas típicamente del orden de magnitud de la constante de Avogadro ) que sólo la descripción estadística de sus propiedades es viable.

La mecánica cuántica, debido al principio de indeterminación de Heisenberg, sólo puede ser descrita actualmente a través de distribuciones de probabilidad, lo que le da una gran importancia a las descripciones probabilísticas. Algunos científicos hablan de la expulsión del paraíso. Otros no se conforman con la pérdida del determinismo. Albert Einstein comentó estupendamente en una carta a Max Born: Jedenfalls bin ich überzeugt, daß der Alte nicht würfelt. (Estoy convencido de que Dios no tira el dado). No obstante hoy en día no existe un medio mejor para describir la física cuántica si no es a través de la teoría de la probabilidad. Mucha gente hoy en día confunde el hecho de que la mecánica cuántica se describe a través de distribuciones de probabilidad con la suposición de que es por ello un proceso aleatorio, cuando la mecánica cuántica es probabilística no por el hecho de que siga procesos aleatorios sino por el hecho de no poder determinar con precisión sus parámetros fundamentales, lo que imposibilita la creación de un sistema de ecuaciones determinista.
17:29 0 comentarios

Probabilidad


La probabilidad mide la frecuencia con la que se obtiene un resultado (o conjunto de resultados) al llevar a cabo un experimento aleatorio, del que se conocen todos los resultados posibles, bajo condiciones suficientemente estables. La teoría de la probabilidad se usa extensamente en áreas como la estadística, la matemática, la ciencia y la filosofía para sacar conclusiones sobre la probabilidad de sucesos potenciales y la mecánica subyacente de sistemas complejos.

La palabra probabilidad no tiene una definición consistente. De hecho hay dos amplias categorías de interpretaciones de la probabilidad: los frecuentistas hablan de probabilidades sólo cuando se trata de experimentos aleatorios bien definidos. La frecuencia relativa de ocurrencia del resultado de un experimento, cuando se repite el experimento, es una medida de la probabilidad de ese suceso aleatorio. Los bayesianos, no obstante, asignan las probabilidades a cualquier declaración, incluso cuando no implica un proceso aleatorio, como una manera de representar su verosimilitud subjetiva.

El estudio científico de la probabilidad es un desarrollo moderno. Los juegos de azar muestran que ha habido un interés en cuantificar las ideas de la probabilidad durante milenios, pero las descripciones matemáticas exactas de utilidad en estos problemas sólo surgieron mucho después.

Según Richard Jeffrey, "Antes de la mitad del siglo XVII, el término 'probable' (en latín probable) significaba aprobable, y se aplicaba en ese sentido, unívocamente, a la opinión y a la acción. Una acción u opinión probable era una que las personas sensatas emprenderían o mantendrían, en las circunstancias."

Aparte de algunas consideraciones elementales hechas por Girolamo Cardano en el siglo XVI, la doctrina de las probabilidades data de la correspondencia de Pierre de Fermat y Blaise Pascal (1654). Christiaan Huygens (1657) le dio el tratamiento científico conocido más temprano al concepto. Ars Conjectandi (póstumo, 1713) de Jakob Bernoulli y Doctrine of Chances (1718) de Abraham de Moivre trataron el tema como una rama de las matemáticas. Véase El surgimiento de la probabilidad (The Emergence of Probability) de Ian Hacking para una historia de los inicios del desarrollo del propio concepto de probabilidad matemática.

La teoría de errores puede trazarse atrás en el tiempo hasta Opera Miscellanea (póstumo, 1722) de Roger Cotes, pero una memoria preparada por Thomas Simpson en 1755 (impresa en 1756) aplicó por primera vez la teoría para la discusión de errores de observación. La reimpresión (1757) de esta memoria expone los axiomas de que los errores positivos y negativos son igualmente probables, y que hay ciertos límites asignables dentro de los cuales se supone que caen todos los errores; se discuten los errores continuos y se da una curva de la probabilidad.
17:11 0 comentarios

Medidas de Dispersión

Estudia la distribución de los valores de la serie, analizando si estos se encuentran más o menos concentrados, o más o menos dispersos.

Existen diversas medidas de dispersión, entre las más utilizadas podemos destacar las siguientes:

1.- Rango: mide la amplitud de los valores de la muestra y se calcula por diferencia entre el valor más elevado y el valor más bajo.

2.- Varianza: Mide la distancia existente entre los valores de la serie y la media. Se calcula como sumatorio de las difrencias al cuadrado entre cada valor y la media, multiplicadas por el número de veces que se ha repetido cada valor. El sumatorio obtenido se divide por el tamaño de la muestra.
La varianza siempre será mayor que cero. Mientras más se aproxima a cero, más concentrados están los valores de la serie alrededor de la media. Por el contrario, mientras mayor sea la varianza, más dispersos están.

3.- Desviación típica: Se calcula como raíz cuadrada de la varianza.

4.- Coeficiente de variación de Pearson: se calcula como cociente entre la desviación típica y la media.

Ejemplo: vamos a utilizar la serie de datos de la estatura de los alumnos de una clase (lección 2ª) y vamos a calcular sus medidas de dispersión.
1.- Rango: Diferencia entre el mayor valor de la muestra (1,30) y el menor valor (1,20). Luego el rango de esta muestra es 10 cm.

2.- Varianza: recordemos que la media de esta muestra es 1,253. Luego, aplicamos la fórmula:

Por lo tanto, la varianza es 0,0010

3.- Desviación típica: es la raíz cuadrada de la varianza.

Luego:

4.- Coeficiente de variación de Pearson: se calcula como cociente entre la desviación típica y la media de la muestra.

Cv = 0,0320 / 1,253

Luego,

Cv = 0,0255

El interés del coeficiente de variación es que al ser un porcentaje permite comparar el nivel de dispersión de dos muestras. Esto no ocurre con la desvación típica, ya que viene expresada en las mismas unidas que los datos de la serie.

Por ejemplo, para comparar el nivel de dispersión de una serie de datos de la altura de los alumnos de una clase y otra serie con el peso de dichos alumnos, no se puede utilizar las desviaciones típicas (una viene vienes expresada en cm y la otra en kg). En cambio, sus coeficientes de variación son ambos porcentajes, por lo que sí se pueden comparar.